Mathematics: analysis and approaches formula booklet

Prior learning
SL and HL 2
Topic 1: Number and algebra
SL and HL 3
HL only 4
Topic 2: Functions
SL and HL 5
HL only 5
Topic 3: Geometry and trigonometry
SL and HL 6
HL only 7
Topic 4: Statistics and probability
SL and HL 9
HL only 10
Topic 5: Calculus
SL and HL 11
HL only 12

AE TeAching
www.aeteaching.com info@aeteaching.com +34637035159

Area of a parallelogram	$A=b h$, where b is the base, h is the height
Area of a triangle	$A=\frac{1}{2}(b h)$, where b is the base, h is the height
Area of a trapezoid	$A=\frac{1}{2}(a+b) h$, where a and b are the parallel sides, h is the height
Area of a circle	$A=\pi r^{2}$, where r is the radius
Circumference of a circle	$C=2 \pi r$, where r is the radius
Volume of a cuboid	$V=l w h$, where l is the length, w is the width, h is the height
Volume of a cylinder	$V=\pi r^{2} h$, where r is the radius, h is the height
Volume of a prism	$V=A h$, where A is the area of cross-section, h is the height
Area of the curved surface of a cylinder	$A=2 \pi r h$, where r is the radius, h is the height
Distance between two points $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}$
Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$

AE TEACHing

Topic I: Number and algebra - SL and HL

$\begin{aligned} & \text { SL } \\ & 1.2 \end{aligned}$	The nth term of an arithmetic sequence The sum of n terms of an arithmetic sequence	$u_{n}=u_{1}+(n-1) d$ $S_{n}=\frac{n}{2}\left(2 u_{1}+(n-1) d\right) ; S_{n}=\frac{n}{2}\left(u_{1}+u_{n}\right)$
$\begin{aligned} & \text { SL } \\ & 1.3 \end{aligned}$	The nth term of a geometric sequence The sum of n terms of a finite geometric sequence	$u_{n}=u_{1} r^{n-1}$ $S_{n}=\frac{u_{1}\left(r^{n}-1\right)}{r-1}=\frac{u_{1}\left(1-r^{n}\right)}{1-r}, r \neq 1$
$\begin{aligned} & \text { SL } \\ & 1.4 \end{aligned}$	Compound interest	$F V=P V \times\left(1+\frac{r}{100 k}\right)^{k n}$, where $F V$ is the future value, $P V$ is the present value, n is the number of years, k is the number of compounding periods per year, $r \%$ is the nominal annual rate of interest
$\begin{aligned} & \text { SL } \\ & 1.5 \end{aligned}$	Exponents and logarithms	$a^{x}=b \Leftrightarrow x=\log _{a} b$, where $a>0, b>0, a \neq 1$
$\begin{aligned} & \text { SL } \\ & 1.7 \end{aligned}$	Exponents and logarithms	$\begin{aligned} & \log _{a} x y=\log _{a} x+\log _{a} y \\ & \log _{a} \frac{x}{y}=\log _{a} x-\log _{a} y \\ & \log _{a} x^{m}=m \log _{a} x \end{aligned}$ $\log _{a} x=\frac{\log _{b} x}{\log _{b} a}$
$\begin{aligned} & \text { SL } \\ & 1.8 \end{aligned}$	The sum of an infinite geometric sequence	$S_{\infty}=\frac{u_{1}}{1-r},\|r\|<1$
$\begin{aligned} & \text { SL } \\ & 1.9 \end{aligned}$	Binomial theorem	$(a+b)^{n}=a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+\ldots+{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}+\ldots+b^{n}$ ${ }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!}$

AE TEACHing
www.aeteaching.com
info@aeteaching.com
+34637035159

Topic I: Number and algebra - HL only

$\begin{aligned} & \text { AHL } \\ & 1.10 \end{aligned}$	Combinations Permutations	$\begin{aligned} & { }^{n} \mathrm{C}_{r}=\frac{n!}{r!(n-r)!} \\ & { }^{n} \mathrm{P}_{r}=\frac{n!}{(n-r)!} \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 1.12 \end{aligned}$	Complex numbers	$z=a+b \mathrm{i}$
$\begin{aligned} & \mathrm{AHL} \\ & 1.13 \end{aligned}$	Modulus-argument (polar) and exponential (Euler) form	$z=r(\cos \theta+\mathrm{i} \sin \theta)=r \mathrm{e}^{\mathrm{i} \theta}=r \operatorname{cis} \theta$
$\begin{aligned} & \text { AHL } \\ & 1.14 \end{aligned}$	De Moivre's theorem	$[r(\cos \theta+\mathrm{i} \sin \theta)]^{n}=r^{n}(\cos n \theta+\mathrm{i} \sin n \theta)=r^{n} \mathrm{e}^{\mathrm{i} n \theta}=r^{n} \operatorname{cis} n \theta$

AE TEACHING

www.aeteaching.com info@aeteaching.com +34637035159

Topic 2: Functions - SL and HL

SL	Equations of a straight line	$y=m x+c ; a x+b y+d=0 ; y-y_{1}=m\left(x-x_{1}\right)$
2.1	Gradient formula	$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
SL	Axis of symmetry of the graph of a quadratic function	$f(x)=a x^{2}+b x+c \Rightarrow$ axis of symmetry is $x=-\frac{b}{2 a}$
SL	Solutions of a quadratic equation 2.7	$a x^{2}+b x+c=0 \Rightarrow x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}, a \neq 0$
Discriminant	$\Delta=b^{2}-4 a c$	

Topic 2: Functions - HL only

AHL Sum and product of the
2.12 roots of polynomial equations of the form $\sum_{r=0}^{n} a_{r} x^{r}=0$

Sum is $\frac{-a_{n-1}}{a_{n}}$; product is $\frac{(-1)^{n} a_{0}}{a_{n}}$

AE TeAching

www.aeteaching.com
info@aeteaching.com
+34637035159

Topic 3: Geometry and trigonometry - SL and HL

$\begin{aligned} & \text { SL } \\ & 3.1 \end{aligned}$	Distance between two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ Coordinates of the midpoint of a line segment with endpoints $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ Volume of a right-pyramid Volume of a right cone Area of the curved surface of a cone Volume of a sphere Surface area of a sphere	$d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}}$ $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}, \frac{z_{1}+z_{2}}{2}\right)$ $V=\frac{1}{3} A h$, where A is the area of the base, h is the height $V=\frac{1}{3} \pi r^{2} h$, where r is the radius, h is the height $A=\pi r l$, where r is the radius, l is the slant height $V=\frac{4}{3} \pi r^{3}$, where r is the radius $A=4 \pi r^{2}$, where r is the radius
$\begin{aligned} & \text { SL } \\ & 3.2 \end{aligned}$	Sine rule Cosine rule Area of a triangle	$\begin{aligned} & \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\ & c^{2}=a^{2}+b^{2}-2 a b \cos C ; \cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b} \\ & A=\frac{1}{2} a b \sin C \end{aligned}$
$\begin{aligned} & \text { SL } \\ & 3.4 \end{aligned}$	Length of an arc Area of a sector	$l=r \theta$, where r is the radius, θ is the angle measured in radians $A=\frac{1}{2} r^{2} \theta$, where r is the radius, θ is the angle measured in radians

$\mathbf{S L}$	Identity for $\tan \theta$	$\tan \theta=\frac{\sin \theta}{\cos \theta}$
$\mathbf{3 . 6}$	Pythagorean identity	$\cos ^{2} \theta+\sin ^{2} \theta=1$
	Double angle identities	$\sin 2 \theta=2 \sin \theta \cos \theta$
		$\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta$

Topic 3: Geometry and trigonometry - HL only

$\begin{aligned} & \text { AHL } \\ & 3.9 \end{aligned}$	Reciprocal trigonometric identities Pythagorean identities	$\begin{aligned} & \sec \theta=\frac{1}{\cos \theta} \\ & \operatorname{cosec} \theta=\frac{1}{\sin \theta} \\ & 1+\tan ^{2} \theta=\sec ^{2} \theta \\ & 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 3.10 \end{aligned}$	Compound angle identities Double angle identity for \tan	$\begin{aligned} & \sin (A \pm B)=\sin A \cos B \pm \cos A \sin B \\ & \cos (A \pm B)=\cos A \cos B \mp \sin A \sin B \\ & \tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \\ & \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 3.12 \end{aligned}$	Magnitude of a vector	$\|\boldsymbol{v}\|=\sqrt{v_{1}^{2}+v_{2}^{2}+v_{3}^{2}} \text {, where } \boldsymbol{v}=\left(\begin{array}{l} v_{1} \\ v_{2} \\ v_{3} \end{array}\right)$

$\begin{aligned} & \text { AHL } \\ & 3.13 \end{aligned}$	Scalar product Angle between two vectors	$\boldsymbol{v} \cdot \boldsymbol{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}$, where $\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right), \boldsymbol{w}=\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$ $\boldsymbol{v} \cdot \boldsymbol{w}=\|\boldsymbol{v} \\| \boldsymbol{w}\| \cos \theta$, where θ is the angle between \boldsymbol{v} and \boldsymbol{w} $\cos \theta=\frac{v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}}{\|\boldsymbol{v} \\| \boldsymbol{w}\|}$
$\begin{aligned} & \text { AHL } \\ & 3.14 \end{aligned}$	Vector equation of a line Parametric form of the equation of a line Cartesian equations of a line	$\boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}$ $x=x_{0}+\lambda l, y=y_{0}+\lambda m, z=z_{0}+\lambda n$ $\frac{x-x_{0}}{l}=\frac{y-y_{0}}{m}=\frac{z-z_{0}}{n}$
$\begin{aligned} & \text { AHL } \\ & 3.16 \end{aligned}$	Vector product Area of a parallelogram	$\boldsymbol{v} \times \boldsymbol{w}=\left(\begin{array}{l}v_{2} w_{3}-v_{3} w_{2} \\ v_{3} w_{1}-v_{1} w_{3} \\ v_{1} w_{2}-v_{2} w_{1}\end{array}\right)$, where $\boldsymbol{v}=\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right), \boldsymbol{w}=\left(\begin{array}{l}w_{1} \\ w_{2} \\ w_{3}\end{array}\right)$ $\|\boldsymbol{v} \times \boldsymbol{w}\|=\|\boldsymbol{v} \\| \boldsymbol{w}\| \sin \theta$, where θ is the angle between \boldsymbol{v} and \boldsymbol{w} $A=\|\boldsymbol{v} \times \boldsymbol{w}\|$ where \boldsymbol{v} and \boldsymbol{w} form two adjacent sides of a parallelogram
$\begin{aligned} & \text { AHL } \\ & 3.17 \end{aligned}$	Vector equation of a plane Equation of a plane (using the normal vector) Cartesian equation of a plane	$\begin{aligned} & \boldsymbol{r}=\boldsymbol{a}+\lambda \boldsymbol{b}+\mu \boldsymbol{c} \\ & \boldsymbol{r} \cdot \boldsymbol{n}=\boldsymbol{a} \cdot \boldsymbol{n} \\ & a x+b y+c z=d \end{aligned}$

AE TeAching

www.aeteaching.com
info@aeteaching.com +34637035159

Topic 4: Statistics and probability - SL and HL

$\begin{aligned} & \mathrm{SL} \\ & 4.2 \end{aligned}$	Interquartile range	$\mathrm{IQR}=Q_{3}-Q_{1}$
$\begin{aligned} & \mathrm{SL} \\ & 4.3 \end{aligned}$	Mean, \bar{x}, of a set of data	$\bar{x}=\frac{\sum_{i=1}^{k} f_{i} x_{i}}{n} \text {, where } n=\sum_{i=1}^{k} f_{i}$
$\begin{aligned} & \mathrm{SL} \\ & 4.5 \end{aligned}$	Probability of an event A Complementary events	$\begin{aligned} & \mathrm{P}(A)=\frac{n(A)}{n(U)} \\ & \mathrm{P}(A)+\mathrm{P}\left(A^{\prime}\right)=1 \end{aligned}$
$\begin{aligned} & \mathrm{SL} \\ & 4.6 \end{aligned}$	Combined events Mutually exclusive events Conditional probability Independent events	$\begin{aligned} & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B) \\ & \mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B) \\ & \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)} \\ & \mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B) \end{aligned}$
$\begin{aligned} & \mathrm{SL} \\ & 4.7 \end{aligned}$	Expected value of a discrete random variable X	$\mathrm{E}(X)=\sum x \mathrm{P}(X=x)$
$\begin{aligned} & \mathrm{SL} \\ & 4.8 \end{aligned}$	Binomial distribution $X \sim \mathrm{~B}(n, p)$ Mean Variance	$\begin{aligned} & \quad X \sim \mathrm{~B}(n, p) \Rightarrow \mathrm{P}(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}, x=0,1, \ldots, n \\ & \mathrm{E}(X)=n p \\ & \operatorname{Var}(X)=n p(1-p) \end{aligned}$
$\begin{array}{\|l\|} \hline \text { SL } \\ \hline 4.12 \end{array}$	Standardized normal variable	$z=\frac{x-\mu}{\sigma}$

AE TEACHing

www.aeteaching.com info@aeteaching.com +34637035159

Topic 4: Statistics and probability - HL only

$\begin{aligned} & \text { AHL } \\ & 4.13 \end{aligned}$	Bayes' theorem	$\begin{aligned} & \mathrm{P}(B \mid A)=\frac{\mathrm{P}(B) \mathrm{P}(A \mid B)}{\mathrm{P}(B) \mathrm{P}(A \mid B)+\mathrm{P}\left(B^{\prime}\right) \mathrm{P}\left(A \mid B^{\prime}\right)} \\ & \mathrm{P}\left(B_{i} \mid A\right)=\frac{\mathrm{P}\left(B_{i}\right) \mathrm{P}\left(A \mid B_{i}\right)}{\mathrm{P}\left(B_{1}\right) \mathrm{P}\left(A \mid B_{1}\right)+\mathrm{P}\left(B_{2}\right) \mathrm{P}\left(A \mid B_{2}\right)+\mathrm{P}\left(B_{3}\right) \mathrm{P}\left(A \mid B_{3}\right)} \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 4.14 \end{aligned}$	Variance σ^{2} Standard deviation σ Linear transformation of a single random variable Expected value of a continuous random variable X Variance Variance of a discrete random variable X Variance of a continuous random variable X	$\begin{aligned} & \sigma^{2}=\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}}{n}=\frac{\sum_{i=1}^{k} f_{i} x_{i}^{2}}{n}-\mu^{2} \\ & \sigma=\sqrt{\frac{\sum_{i=1}^{k} f_{i}\left(x_{i}-\mu\right)^{2}}{n}} \\ & \mathrm{E}(a X+b)=a \mathrm{E}(X)+b \\ & \operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X) \\ & \mathrm{E}(X)=\mu=\int_{-\infty}^{\infty} x f(x) \mathrm{d} x \\ & \operatorname{Var}(X)=\mathrm{E}(X-\mu)^{2}=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\ & \operatorname{Var}(X)=\sum^{2}(x-\mu)^{2} \mathrm{P}(X=x)=\sum x^{2} \mathrm{P}(X=x)-\mu^{2} \\ & \operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-\mu)^{2} f(x) \mathrm{d} x=\int_{-\infty}^{\infty} x^{2} f(x) \mathrm{d} x-\mu^{2} \end{aligned}$

AE TEACHING

www.aeteaching.com
info@aeteaching.com
+34637035159

Topic 5: Calculus - SL and HL

$\begin{aligned} & \text { SL } \\ & 5.3 \end{aligned}$	Derivative of x^{n}	$f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1}$
$\begin{aligned} & \mathrm{SL} \\ & 5.5 \end{aligned}$	Integral of x^{n} Area between a curve $y=f(x)$ and the x-axis, where $f(x)>0$	$\int x^{n} \mathrm{~d} x=\frac{x^{n+1}}{n+1}+C, n \neq-1$ $A=\int_{a}^{b} y \mathrm{~d} x$
$\begin{aligned} & \text { SL } \\ & 5.6 \end{aligned}$	Derivative of $\sin x$ Derivative of $\cos x$ Derivative of e^{x} Derivative of $\ln x$ Chain rule Product rule Quotient rule	$\begin{aligned} & f(x)=\sin x \Rightarrow f^{\prime}(x)=\cos x \\ & f(x)=\cos x \Rightarrow f^{\prime}(x)=-\sin x \\ & f(x)=\mathrm{e}^{x} \Rightarrow f^{\prime}(x)=\mathrm{e}^{x} \\ & f(x)=\ln x \Rightarrow f^{\prime}(x)=\frac{1}{x} \\ & y=g(u), \text { where } u=f(x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} u} \times \frac{\mathrm{d} u}{\mathrm{~d} x} \\ & y=u v \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=u \frac{\mathrm{~d} v}{\mathrm{~d} x}+v \frac{\mathrm{~d} u}{\mathrm{~d} x} \\ & y=\frac{u}{v} \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}} \end{aligned}$
$\begin{aligned} & \text { SL } \\ & 5.9 \end{aligned}$	Acceleration Distance travelled from t_{1} to t_{2} Displacement from t_{1} to t_{2}	$\begin{aligned} & a=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d}^{2} s}{\mathrm{~d} t^{2}} \\ & \text { distance }=\int_{t_{1}}^{t_{2}}\|v(t)\| \mathrm{d} t \\ & \text { displacement }=\int_{t_{1}}^{t_{2}} v(t) \mathrm{d} t \end{aligned}$

AE TEACHing

www.aeteaching.com
info@aeteaching.com
+34637035159

| SL |
| :--- | :--- | :--- |
| 5.10 | Standard integrals $\quad \int \frac{1}{x} \mathrm{~d} x=\ln |x|+C \quad$| $\int \sin x \mathrm{~d} x=-\cos x+C$ |
| :--- |

Topic 5: Calculus - HL only

$\begin{gathered} \text { AHL } \\ 5.12 \end{gathered}$	Derivative of $f(x)$ from first principles	$y=f(x) \Rightarrow \frac{\mathrm{d} y}{\mathrm{~d} x}=f^{\prime}(x)=\lim _{h \rightarrow 0}\left(\frac{f(x+h)-f(x)}{h}\right)$
$\begin{aligned} & \text { AHL } \\ & 5.15 \end{aligned}$	Standard derivatives $\tan x$ $\sec x$ $\operatorname{cosec} x$ $\cot x$ a^{x} $\log _{a} x$ $\arcsin x$ $\arccos x$ $\arctan x$	$\begin{aligned} & f(x)=\tan x \Rightarrow f^{\prime}(x)=\sec ^{2} x \\ & f(x)=\sec x \Rightarrow f^{\prime}(x)=\sec x \tan x \\ & f(x)=\operatorname{cosec} x \Rightarrow f^{\prime}(x)=-\operatorname{cosec} x \cot x \\ & f(x)=\cot x \Rightarrow f^{\prime}(x)=-\operatorname{cosec}^{2} x \\ & f(x)=a^{x} \Rightarrow f^{\prime}(x)=a^{x}(\ln a) \\ & f(x)=\log _{a} x \Rightarrow f^{\prime}(x)=\frac{1}{x \ln a} \\ & f(x)=\arcsin x \Rightarrow f^{\prime}(x)=\frac{1}{\sqrt{1-x^{2}}} \\ & f(x)=\arccos x \Rightarrow f^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}} \\ & f(x)=\arctan x \Rightarrow f^{\prime}(x)=\frac{1}{1+x^{2}} \end{aligned}$

$\begin{aligned} & \text { AHL } \\ & 5.15 \end{aligned}$	Standard integrals	$\begin{aligned} & \int a^{x} \mathrm{~d} x=\frac{1}{\ln a} a^{x}+C \\ & \int \frac{1}{a^{2}+x^{2}} \mathrm{~d} x=\frac{1}{a} \arctan \left(\frac{x}{a}\right)+C \\ & \int \frac{1}{\sqrt{a^{2}-x^{2}}} \mathrm{~d} x=\arcsin \left(\frac{x}{a}\right)+C,\|x\|<a \end{aligned}$
$\begin{aligned} & \text { AHL } \\ & 5.16 \end{aligned}$	Integration by parts	$\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$ or $\int u \mathrm{~d} v=u v-\int v \mathrm{~d} u$
$\begin{aligned} & \text { AHL } \\ & 5.17 \end{aligned}$	Area of region enclosed by a curve and y-axis Volume of revolution about the x or y-axes	$\begin{aligned} & A=\int_{a}^{b}\|x\| \mathrm{d} y \\ & V=\int_{a}^{b} \pi y^{2} \mathrm{~d} x \text { or } V=\int_{a}^{b} \pi x^{2} \mathrm{~d} y \end{aligned}$
$\begin{gathered} \text { AHL } \\ 5.18 \end{gathered}$	Euler's method Integrating factor for $y^{\prime}+P(x) y=Q(x)$	$y_{n+1}=y_{n}+h \times f\left(x_{n}, y_{n}\right) ; x_{n+1}=x_{n}+h$, where h is a constant (step length) $\mathrm{e}^{\int P(x) \mathrm{dx}}$
$\begin{aligned} & \text { AHL } \\ & 5.19 \end{aligned}$	Maclaurin series Maclaurin series for special functions	$\begin{aligned} & f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\ldots \\ & \mathrm{e}^{x}=1+x+\frac{x^{2}}{2!}+\ldots \\ & \ln (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\ldots \\ & \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\ & \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots \\ & \arctan x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\ldots \end{aligned}$

